Sign Up:

(*) denotes required form field(s)

Our registration process uses cookies, by submitting this registration form you agree to our cookie policy.



Already Registered? Click Here

Measuring Multivalent
Interactions: Uncovering the
Secrets of Virus Binding Strategies

June 13, 2019
8:00 am PT, 11:00 am ET, 17:00 CET

Influenza A virus (IAV) utilizes a multivalent binding strategy to the host cell, binding its trimeric spike protein hemagglutinin (HA) to sialic acid present on the cellular membrane. For this reason, IAV has served as a model system to study multivalent ligand-receptor binding events, resulting in the discovery of potent bi-, tri-, and multivalent inhibitor compounds. To quantify the affinities between these compounds and their targets and obtain affinity constants, researchers often use technologies such as SPR, ITC, or NMR, which require high sample consumption. This is problematic since compounds that require a precise architecture, or an elaborate chemical synthesis can only be obtained at low scale. Additionally, the immobilization of one of the binding partners on solid surfaces, an environment far from native conditions, poses a challenge as viral proteins should be used in conditions that  mimic the surface topology of the virus.

In this GEN webinar, we will learn from Dr. Daniel Lauster, who, when faced with many of the challenges described above, utilized MicroScale Thermophoresis (MST) to measure the interaction between more than 100 novel non-toxic multivalent nanoparticle-conjugates and intact IAV in solution with as little as nanomoles of nanoparticles. Additionally, we will hear from Dr. Matthias Molnar how MST is becoming scientists’ first choice for the characterization of molecular interactions thanks to its flexible throughput, low sample consumption, and measurements in solution or in close to native conditions.



Daniel Lauster, PhD
Postdoctoral Researcher
Freie University, Berlin
View Biography
Matthias Molnar, PhD
Product Manager
NanoTemper Technologies
View Biography